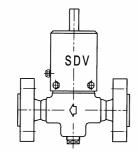
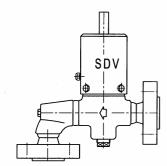
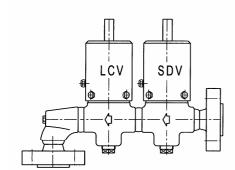


Via Toscana, 9 20060 Vignate (MI) - Italy Tel. +39-02-95.36.12.40 Fax +39-02-95.60.273 E-mail: sales@technical.it


www.technical.it


ACTUATED GATE VALVE


GV 20000N SERIES

USE AND MAINTENANCE MANUAL

ACTUATED GATE VALVE

Characteristics

• Line connections: 1"-11/2"-2"ANSI/API flanged

1" NPT-female:

• max. press. Line: 700 bar

(or as per flange rating);

• orifice Ø LV : Ø 3 - 4 - 6 - 8 - 10 - 12 - 18 mm

Ø SDV : Ø 12 - 16 - 18 - 24 mm;

• supply: 4 - 21 bar;

• supply connection : 1/4"NPT-female;

• maximum temperature : 150°C;

execution : see table.

Accessories

• Pneumatic control panel;

electro-pneumatic control panel;

electrical limit switches:

manual override;

• mechanical counter.

ORIFICE SELECTION

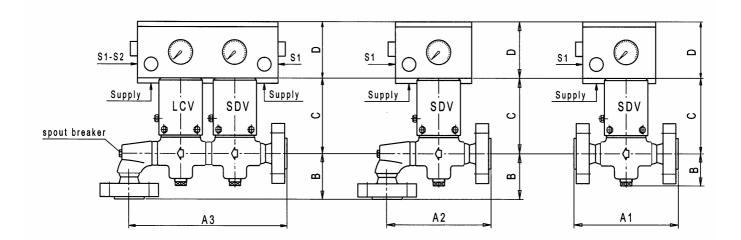
MAXIMUM FLOW RATE

$$Q = 14,38 \cdot Cv \cdot \sqrt{\frac{\Delta P}{G}}$$

COEFFICIENT CALCULATION

$$Cv = \frac{Q}{14,38 \cdot \sqrt{G/\Delta P}}$$

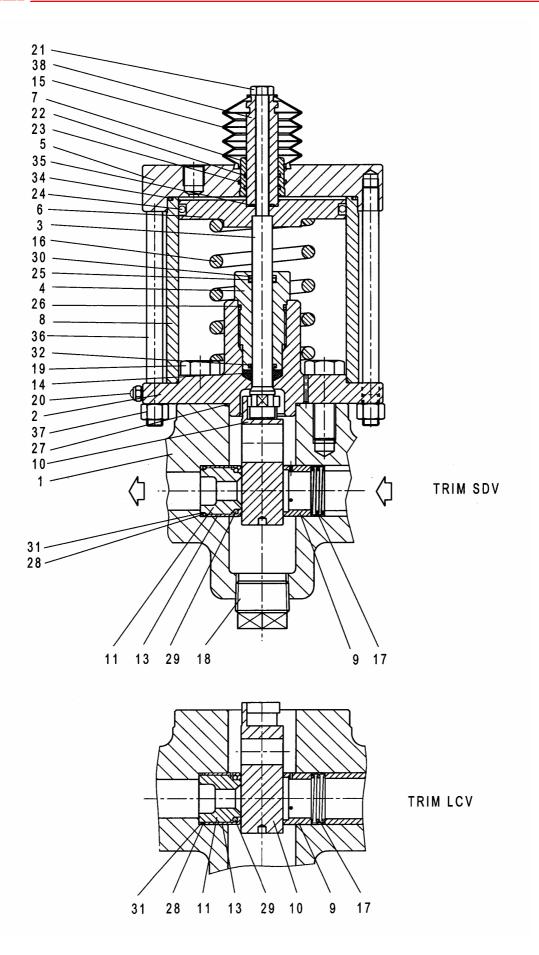
WITH:


Q = [1/min]

P = [bar]

G = [kg/I]

ACTUATED GATE VALVE GV 20000N SERIES


Connections				Dimensions (mm.)					
DN	ANSI	DN	API	A1	A2	A3	В	С	D
	600		2.000	239	264	414	104		
	900		3.000	262	275	425	115	200 1	
1"	1.500	1.11/16"	5.000	262	275	425	115		120
	2.500			275	281	432	122		
			10.000	285	290	440	127		
	600		2.000	250	269	419	109		
	900		3.000	278	283	433	122		
1½"	1.500	1.13/16"	5.000	278	283	433	122	200	120
	2.500			317	302	452	142		
			10.000	290	290	440	127		
2"	600		2.000	256	272	422	112		
	900		3.000	304	296	446	135		
	1.500	2.1/16"	5.000	304	296	446	135	200	120
	2.500		·	330	309	459	149		
			10.000	300	295	445	135		

LV Orifice										
Æ mm.	3	4	5	6	8	10	12	14	16	18
Cv	0,35	0,65	1	1,5	2,5	3,7	5,5	7,2	10,5	13
Market and her about a support of the support										

We are be able to supply also other orifices

SDV Orifice							
Æ mm.	Æ mm. 12 16 18 24						
Cv	5,5	10,5	13	16			
We are be able to supply also other orifices							

Actuated Gate Valve GV 20000N Series

The actuated gate valve **GV 20000N** Series are used principally to discharge condensation from the separators installed in natural gas extraction wells. The valves can operated up to 700 bar and be utilized either with liquids or with gaseous fluids. The valves have an integral pneumatic actuator and can also be furnished with various accessories designed to automate the operation.

All trims are interchangeable with all sizing.

1. INSTALLING

Before installing the valve on the plant make sure that:

- the line fluid is indicated on the construction declaration or is compatible with what stated in it;
- the inlet piping of the valve is devoid of impurities, slag etc. and eventually remove them.
- the inlet and discharge piping are dimensioned in such a way that they generate the minimum possible stress of pressure.

Once the valve has been installed on the plant make sure that:

- no external and unusual forces loadings, are used with the valve;
- the discharge is properly conveyed.

1.1 SETTING UP

Before shipment all the valve are hydrostatically tested and set at the setting pressure required by the client.

2. DISASSEMBLING

2.1 VALVE WITHOUT ACCESSORIES

In order to execute disassembling carry out progressively the following operations:

CAUTION: before disassembling the valve make sure that the plant on which it is mounted is not "under pressure" and that no pressure inside the valve itself has remained.

- remove the valve from the plant;
- remove the bellows (15);
- unscrew the nut (37) the studs (36) and remove the upper flange (5) and the cylinder (8);

CAUTION: turn counter clockwise the screw (21) to unload completely the spring (16);

- remove the upper stem (38), the piston (6) and the spring (16);
- remove the plug (18);
- remove the screws (19) and extract the bonnet (2) with all internal parts and the gate (10);
- remove the gate (10) from the stem (3);
- remove the stem (3) from the bonnet (2);
- lock the bonnet (2), unscrew completely the guide (4) and take out the spacer (14);
- remove the bush (9) and the spring (17);
- remove the guide (13) and the seat (11).

CAUTION: In case the actuated gate valve is double-body type all the operations described in point 2) have to be carried out on both actuators.

2.2 VALVE WITH STD CONTROL PANEL (RIF.00-0076-00)

In order to execute disassembling carry out progressively the following operations:

CAUTION:

before disassembling the valve make sure that the plant on which it is mounted is not "under pressure" and that no pressure inside the valve itself has remained. Check that pressure is "zero" in gauges inserted into the control panel.

For disassembling the control panel carry out the following operations progressively:

- remove the bonnet (2);
- disconnect the pipe fitting supply (4);
- unscrew the screw (14) on the base of the panel and remove from the valve;

3. ASSEMBLING

3.1 VALVE WITHOUT ACCESSORIES

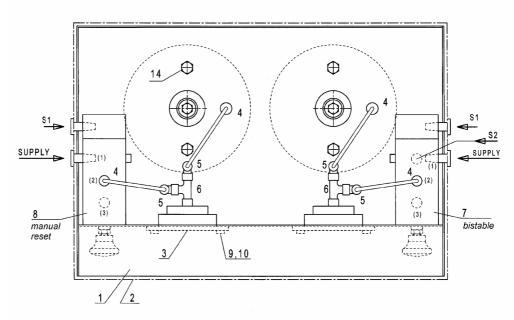
For assembling carry out the same operations of point 2.1) but in reverse order.

3.2 VALVE WITH STD CONTROL PANEL

For assembling carry out the same operations of point 2.2) but in reverse order.

4. MAINTENANCE

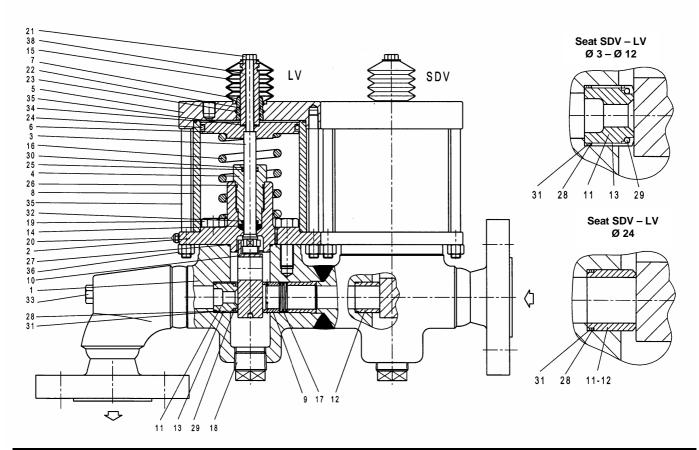
The actuated gate valve requires an ordinary but careful maintenance (SEE MAINTENANCE PLANT) and in case it would be necessary, follow the operation stated in point 2) for disassembling, and in point 3) for assembling. In case of seats and gate damaging it is necessary to carry out a new lapping: this operation has to be executed by skilled workers.


In case inconvenience should occur to the valve, verify if in the **DAMAGES TABLE** are contained some useful instructions for solving the problem.

In case the inconvenience is of different nature from what stated in the table, contact our Service Dept.

WARNING

- The actuated gate valve should not be subjected to bumps or such stresses that could compromise the working.
- The actuated gate valve must be used only exclusively for the use stated in the construction declaration.
- In case of valve with control panel do not stand on the valve or leave heavy loadings on the bonnet, in order to not interfere with the correct working of the valve.



ORDINARY MAINTENANCE PLAN					
Check of the seat and disc on the plant	Every 2000 cycles of open/close or every 3 months working				
Check of the seal gasket on the plant from piston-cylinder and stem-cylinder.	Every 150 cycles of open/close or every 3 months working.				
Check of the painting condition on the plant.	every 6 months.				
Ordinary maintenance of the valve removed from the plant including the disassembling, the seat and disc check and the gasket substitution.	Every 8000 cycles of open/close or every 24 months of working.				
General maintenance of the valve removed from the plant including the disassembling, the seat and the disc substitution, gaskets substitution, painting restoration and inspection on the test bench.	Every 15000 cycles of open/close or every 36 months of working.				

DAMAGES TABLE							
INCONVENIENT	POSSIBLE DAMAGE	ACTION TO BE CARRIED OUT					
	Seat wear and tear	Nozzle substitution or revision					
	Disc wear and tear	Disc substitution or revision					
Fluid leakage in line	Seat and disc damaging	Nozzle and disc revision					
	Impurities presence between seat and disc	Nozzle and disc cleaning and revision					
	Valve use with fluid different from the one stated in the purchase order.	Nozzle and disc revision					
External discharge fluid	Valve gaskets damaging	Gasket substitution					
leakage	Valve body-bonnet damaging	Gasket substitution					
	Circuit of supply damaging	Revision or substitution control panel components					
External leakage of supply fluid.	Gasket piston-cylinder damaging	Gasket substitution					
	Cylinder damaging	Cylinder substitution or revision					
Short time valve intervention	Seat wear and tear	Nozzle substitution or revision					
and closing the gate valve for lower level sensor	Disc wear and tear	Disc substitution or revision					
intervention	Seat gasket damaging	Gasket substitution					
Unsuccessful valve	Seat wear and tear	Nozzle substitution or revision					
intervention (continuos fluid leakage in	Disc wear and tear	Disc substitution or revision					
line)	Seat gasket damaging	Gasket substitution					
Difficult closing the valve	Stem damaging	Stem substitution or revision					
Difficult Globing the valve	Spring release	Spring substitution					
Difficulty are a rich that and the	Stem damaging	Stem substitution or revision					
Difficult opening the valve	Gasket piston-cylinder damaging	Gasket substitution					

	0.4.0.70	MATERIAL CLASS		
ITEM.	PARTS	11	21	
1	BODY	A 105	A 182 F5	
2	BONNET	A350LF2	AISI 410	
3	STEM	AISI 630		
4	GUIDE	COPPER-	ALUMINIUM	
5	UPPER FLANGE	CARB	. STEEL	
6	PISTON	CARB. STEE		
7	BUSH	PTFE / GRAPHITE		
8	CYLINDER	CARB. STEEL		
9	BUSH	AISI 303		
10	GATE	AISI 410 + NICKEL		
11	SEATLV	TUNGSTEN CARBIDE		
12	SEAT SDV	TUNGSTEN CARBIDE		
13	BUSH (seat)	COPPER-ALUMINIUM		
14	SPACER	NYLON		
15	BELLOWS	RUBBER		
16	SPRING	ALLOY STEEL		
17	SPRING	AISI 316		
18	PLUG	A 105 NICKELATED		
19	SCREW	ALLOY STEEL		

ITEM.	PARTS	MATERIAL CLASS			
112111	TARTO	11	21		
20	FILTER 1/8" GAS	BRASS + AISI 304			
21	SCREW	AIS	I 304		
22	O-RING 2081	FPM R	UBBER		
23	O-RING 2106	FPM R	UBBER		
24	O-RING 6375	FPM R	UBBER		
25	O-RING 3050	FPM R	UBBER		
26	O-RING 3106	FPM R	UBBER		
27	O-RING 2175	FPM R	UBBER		
28	O-RING 2112	FPM R	UBBER		
29	O-RING 3087	FPM R	UBBER		
30	BACK UP 8-112	RUE	BBER		
31	BACK UP 8-024	RUE	BBER		
32	SEAL RING	PTFE	/FPM		
33	SPOUT	AISI 316	L STELL.		
34	O-RING 3450	FPM R	UBBER		
35	O-RING 114	FPM R	UBBER		
36	STUD	ST.S	TEEL		
37	NUT	ST.S	TEEL		
38	UPPER STEM	AISI	316L		